Structure and function of eukaryotic Ribonuclease P RNA.

نویسندگان

  • Steven M Marquez
  • Julian L Chen
  • Donald Evans
  • Norman R Pace
چکیده

Ribonuclease P (RNase P) is the ribonucleoprotein endonuclease that processes the 5' ends of precursor tRNAs. Bacterial and eukaryal RNase P RNAs had the same primordial ancestor; however, they were molded differently by evolution. RNase P RNAs of eukaryotes, in contrast to bacterial RNAs, are not catalytically active in vitro without proteins. By comparing the bacterial and eukaryal RNAs, we can begin to understand the transitions made between the RNA and protein-dominated worlds. We report, based on crosslinking studies, that eukaryal RNAs, although catalytically inactive alone, fold into functional forms and specifically bind tRNA even in the absence of proteins. Based on the crosslinking results and crystal structures of bacterial RNAs, we develop a tertiary structure model of the eukaryal RNase P RNA. The eukaryal RNA contains a core structure similar to the bacterial RNA but lacks specific features that in bacterial RNAs contribute to catalysis and global stability of tertiary structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain.

Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired ...

متن کامل

Ribonuclease P: the diversity of a ubiquitous RNA processing enzyme.

Ribonuclease P is the endonuclease required for generating the mature tRNA 5'-end. The ribonucleoprotein character of this enzyme has now been proven in most organisms and organelles. Exceptions, however, are still the chloroplasts, plant nuclei and animal mitochondria where no associated RNAs have been detected to date. In contrast to the known RNA subunits, which are fairly well-conserved in ...

متن کامل

Crystal structure of archaeal ribonuclease P protein Ph1771p from Pyrococcus horikoshii OT3: an archaeal homolog of eukaryotic ribonuclease P protein Rpp29.

Ribonuclease P (RNase P) is the endonuclease responsible for the removal of 5' leader sequences from tRNA precursors. The crystal structure of an archaeal RNase P protein, Ph1771p (residues 36-127) from hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined at 2.0 A resolution by X-ray crystallography. The structure is composed of four helices (alpha1-alpha4) and a six-stranded ant...

متن کامل

Protein components contribute to active site architecture for eukaryotic ribonuclease P.

In eukaryotes, ribonuclease P (RNase P) requires both RNA and protein components for catalytic activity. The eukaryotic RNase P RNA, unlike its bacterial counterparts, does not possess intrinsic catalytic activity in the absence of holoenzyme protein components. We have used a sensitive photoreactive cross-linking assay to explore the substrate-binding environment for different eukaryotic RNase...

متن کامل

The RNase III family: a conserved structure and expanding functions in eukaryotic dsRNA metabolism.

The last few years have witnessed the appreciation of dsRNA as a regulator of gene expression, a potential antiviral agent, and a tumor suppressor. However, in spite of these clear effects on the cell function, the mechanism that controls dsRNA maturation and stability remains unknown. Recently, the discovery of eukaryotic orthologues of the bacterial dsRNA specific ribonuclease III (RNase III)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 24 3  شماره 

صفحات  -

تاریخ انتشار 2006